Model spaces in sub-Riemannian geometry

نویسندگان

چکیده

We consider sub-Riemannian spaces admitting an isometry group that is maximal in the sense any linear of horizontal tangent realized by a global isometry. will show these have canonical partial connection defined on their bundle. However, unlike Riemannian case, such are not uniquely determined curvature and metric cone. Furthermore, number invariants needed to determine model with same cone general greater than one.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub - Riemannian geometry :

Take an n-dimensional manifold M . Endow it with a distribution, by which I mean a smooth linear subbundle D ⊂ TM of its tangent bundle TM . So, for x ∈ M , we have a k-plane Dx ⊂ TxM , and by letting x vary we obtain a smoothly varying family of k-planes on M . Put a smoothly varying family g of inner products on each k-plane. The data (M,D, g) is, by definition, a sub-Riemannian geometry. Tak...

متن کامل

Topics in sub-Riemannian geometry

Sub-Riemannian geometry is the geometry of spaces with nonholonomic constraints. This paper presents an informal survey of some topics in this area, starting with the construction of geodesic curves and ending with a recent definition of curvature. Bibliography: 28 titles.

متن کامل

Connections in sub-Riemannian geometry

We introduce the notion of a connection over a bundle map and apply it to a sub-Riemannian geometry. It is shown that the concepts of normal and abnormal extremals of a sub-Riemannian structure can be characterized as parallel transported sections with respect to these generalized connections. Using this formalism we are able to give necessary and sufficient conditions for the existence of a sp...

متن کامل

Riemannian Geometry on Quantum Spaces

An algebraic formulation of Riemannian geometry on quantum spaces is presented, where Riemannian metric, distance, Laplacian, connection, and curvature have their counterparts. This description is also extended ∗email address: [email protected] to complex manifolds. Examples include the quantum sphere, the complex quantum projective spaces and the two-sheeted space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Analysis and Geometry

سال: 2021

ISSN: ['1019-8385', '1944-9992']

DOI: https://doi.org/10.4310/cag.2021.v29.n1.a3